6,978 research outputs found

    Changes in Cascading Failure Risk with Generator Dispatch Method and System Load Level

    Full text link
    Industry reliability rules increasingly require utilities to study and mitigate cascading failure risk in their system. Motivated by this, this paper describes how cascading failure risk, in terms of expected blackout size, varies with power system load level and pre-contingency dispatch. We used Monte Carlo sampling of random branch outages to generate contingencies, and a model of cascading failure to estimate blackout sizes. The risk associated with different blackout sizes was separately estimated in order to separate small, medium, and large blackout risk. Results from N1N-1 secure models of the IEEE RTS case and a 2383 bus case indicate that blackout risk does not always increase with load level monotonically, particularly for large blackout risk. The results also show that risk is highly dependent on the method used for generator dispatch. Minimum cost methods of dispatch can result in larger long distance power transfers, which can increase cascading failure risk.Comment: Submitted to Transmission and Distribution Conference and Exposition (T&D), 2014 IEEE PE

    High performance N2O4/amine elements: Data dump covering. Task 1: Literature review

    Get PDF
    The phenomenon of reactive stream separation (RSS) in the N2O4/amine earth-storable propellant combinations is reviewed. Early theoretical models of RSS are presented, as are experimental combustion data under simulated rocket conditions. N2O4/amine combustion chemistry data is also provided. More recent work in the development of a comprehensive model is described

    Experimental investigation of combustor effects on rocket thrust chamber performance

    Get PDF
    The results are reported of a program to develop special instrumentation systems and engine hardware, conduct tests using LOX/GH2 propellants wherein radial mixtures ratio stratification was controlled, and subsequently compare the results of four selected tests with the predictions of the JANNAF performance-prediction computer programs. During the experiments, the overall propellant mixture ratio was varied from 4.4 to 6.6, while the mixture ratios in the core and outer zone were varied from 5.7 to 8.8 and from 3.7 to 7.2, respectively. A nominal 10 percent of the total fuel flow was used as boundary layer collant in a majority of the firings. Nominal chamber pressure was either 225 or 250 psia, with nozzle expansion ratios of either 25:1 or 4:1. Measurements of the axial chamber pressure and wall heat flux profiles, together with samples of the exhaust gas, were obtained. The corrected experimental specific impulse and characteristic exhaust velocity efficiencies were approximately 97.5 and 98.5 percent, respectively

    Development of vibration design procedures for representative structural types Final technical report, Sep. 1965 - Jul. 1966

    Get PDF
    Effects of multimode and damping on random fatigue of cantilever beams and bracket

    Cascading Power Outages Propagate Locally in an Influence Graph that is not the Actual Grid Topology

    Get PDF
    In a cascading power transmission outage, component outages propagate non-locally, after one component outages, the next failure may be very distant, both topologically and geographically. As a result, simple models of topological contagion do not accurately represent the propagation of cascades in power systems. However, cascading power outages do follow patterns, some of which are useful in understanding and reducing blackout risk. This paper describes a method by which the data from many cascading failure simulations can be transformed into a graph-based model of influences that provides actionable information about the many ways that cascades propagate in a particular system. The resulting "influence graph" model is Markovian, in that component outage probabilities depend only on the outages that occurred in the prior generation. To validate the model we compare the distribution of cascade sizes resulting from n2n-2 contingencies in a 28962896 branch test case to cascade sizes in the influence graph. The two distributions are remarkably similar. In addition, we derive an equation with which one can quickly identify modifications to the proposed system that will substantially reduce cascade propagation. With this equation one can quickly identify critical components that can be improved to substantially reduce the risk of large cascading blackouts.Comment: Accepted for publication at the IEEE Transactions on Power System

    Faculty and Librarian Collaboration on Problem-Based Learning

    Get PDF
    This report describes a case study using a collaborative model of problem-based learning in library instruction as an innovative alternative to traditional methods. The authors examine the use of problem-based library instruction in three courses, including an examination of the results of the assignment students were given as part of the exercise. The authors found that the problem-based learning model increased student engagement with library resources and provided a mechanism for identifying and correcting deficiencies in students’ information literacy knowledge and skills. If a specific session of library instruction is intended to provide guidance on the use of the library for a particular assignment or project, then using a problem-based learning approach in collaboration with teaching faculty is a simple way to improve library instruction
    corecore